Classification

Types

  • Binary: 2 classes
  • Multi-class: K classes
  • Multi-label: multiple labels per sample

Decision Boundary

  • Separates classes in feature space
  • Linear: hyperplane
  • Non-linear: curves, complex shapes

Linear Classifier

  • score = w · x + b
  • If score > 0: class 1
  • Weights define boundary

Sigmoid (Binary)

  • σ(z) = 1 / (1 + e^(-z))
  • Converts score to P(class=1)
  • Range: (0, 1)

Logistic Regression

  • P = sigmoid(w · x + b)
  • Loss: binary cross-entropy
  • Gradient: (p - y) × x

Softmax (Multi-class)

  • softmax(z)ᵢ = exp(zᵢ) / Σexp(zⱼ)
  • Outputs sum to 1
  • Use with cross-entropy loss

Class Imbalance

  • Majority class dominates
  • Use resampling or class weights
  • Evaluate with F1, not accuracy
1 / 1
Use arrow keys or click edges to navigate. Press H to toggle help, F for fullscreen.