Calculus for ML

Derivatives

  • Rate of change: f'(x) = df/dx
  • Positive = increasing, negative = decreasing
  • Zero = potential min/max

Common Derivatives

  • x^n → n*x^(n-1)
  • e^x → e^x
  • ln(x) → 1/x

Chain Rule

  • (f(g(x)))' = f'(g(x)) * g'(x)
  • Foundation of backpropagation
  • Gradients flow backward

Partial Derivatives

  • Derivative w.r.t. one variable
  • Others held constant
  • ∂f/∂x, ∂f/∂y

Gradient

  • ∇f = [∂f/∂x₁, ∂f/∂x₂, ...]
  • Points toward steepest increase
  • Negate for descent

Gradient Descent

  • x = x - lr * ∇f(x)
  • Learning rate controls step size
  • Repeat until convergence

Numerical Gradients

  • (f(x+h) - f(x-h)) / 2h
  • Slow but useful for debugging
  • Always verify analytical gradients
1 / 1
Use arrow keys or click edges to navigate. Press H to toggle help, F for fullscreen.